Mouse model for PMM2-CDG

Andrew C. Edmondson, MD, PhD 26 July 2019

4th World Conference on CDG Lisbon, Portugal

Mouse as a disease model

Uses

- Determine genetic causation
- Understand pathophysiology
- Use as a preclinical model

Mouse as a disease model

Uses

- Determine genetic causation
- Understand pathophysiology
- Use as a preclinical model

- Genetic similarities with humans
- Tools for genetic manipulation
- Lifespan/Reproduction rate
- Size/Ease of handling/Cost

Mouse as a disease model

Uses

- Determine genetic causation
- Understand pathophysiology
- Use as a preclinical model

- Phenotypes
- Alternative physiology
- Predictive validity
- Inbred strain differences

New Gene

• Knockin

Types of genetic mouse models

- Transgenic
- Knockin
- Knockout

Types of genetic mouse models

- Transgenic
- Knockin
- Knockout

Cre

Conditional knockout

Knockout

- PMM2 gene disruption
- Homozygous lethal around E2.5
- Functional glycosylation machinery is essential in early development

Knockin #1 and #2

- #1 R141H (R137H in mice)
 - Most common human mutation
- #2 F122L (F118L in mice)
 - Synthetic predicted mild mutation
- *Pmm2*^{R137H/R137H}
 - Embryonic lethal before E5.5
- *Pmm2*^{F118L/F118L}
 - Viable, fertile, without major phenotypes
 - PMM2 enzyme activity ~ 40% WT

PMM2

Knockin #1/#2

- *Pmm2*^{R137H/F118}
 - Embryonic lethal ~E9.5-E10.5
 - Small
 - Tissue degradation
 - PMM2 enzyme activity = 11% WT
 - Rescue with mannose to mothers

9.5 d.p.c. 10.5 d.p.c. Pmm2^{+/+} Pmm2^{R137H/F118L}

Schneider et al. 2011. Nat Med. 18:71-3

Knockin #3

- #3 F119L (F115L in mice)
 - 2nd most common human mutation
- *Pmm2*^{F115L/F115L}
 - Embryonic lethal in more than $\frac{1}{2}$
 - Rescue with mannose to mothers

Chan et al. 2016. Hum Mol Genet. 25:2182-2193

Knockin #1/#3

- *Pmm2*^{R137H/F115L}
 - Most common human genotype
 - (R141H/F119L)
 - ¹/₂ embryonic lethal
 - No effect of mannose

Chan et al. 2016. Hum Mol Genet. 25:2182-2193

Knockin #1/#3

- *Pmm2*^{R137H/F115L}
 - ¹⁄₂ die by postnatal day 65
 - Small
 - Hypotonia in hind limbs (6%)
 - Curvature of the back (29%)
 - Heart, liver, kidney abnormalities
 - Decreased glycosylated plasma proteins
 - Normal plasma transferrin glycosylation
 - PMM2 enzyme activity = 15-16% WT
 - No histologic brain abnormalities

Knockin #1/#3

- *Pmm2*^{R137H/F115L}
 - ¹⁄₂ die by postnatal day 65
 - Small
 - Hypotonia in hind limbs (6%)
 - Curvature of the back (29%)
 - Heart, liver, kidney abnormalities
 - Decreased glycosylated plasma proteins
 - Normal plasma transferrin glycosylation
 - PMM2 enzyme activity = 15-16% WT
 - No histologic brain abnormalities

Knockin #1/#3

- *Pmm2*^{R137H/F115L}
 - ¹⁄₂ die by postnatal day 65
 - Small
 - Hypotonia in hind limbs (6%)
 - Curvature of the back (29%)
 - Heart, liver, kidney abnormalities
 - Decreased glycosylated plasma proteins
 - Normal plasma transferrin glycosylation
 - PMM2 enzyme activity = 15-16% WT
 - No histologic brain abnormalities

Conclusions

- Range of phenotypes from early embryonic lethality to normal
- *Pmm2*^{R137H/F115L}
 - Most common patient genotype
 - Reproduces several human PMM2-CDG phenotypes
 - Available through Jackson Labs
 - Significant embryonic lethality
 - Significant postnatal lethality
 - No histologic brain phenotype

- Conditional knockout allele
- Floxed *PMM2* exon 3
- Remove exon 3 with Cre

Pmm2^{tm1c(EUCOMM)Wtsi}

- Conditional knockout allele
- Floxed *PMM2* exon 3

INNPInternational Mouse Phenotyping Consortium

Remove exon 3 with Cre

IMPC validated embryonic lethal

Pmm2tm1c(EUCOMM)Wtsi

- Generate conditional knockout/knockin mice
- Generate cell type-specific Pmm2 deficiency with Cre
- Avoid embryonic lethality
- Model severe Pmm2 deficiency in isolated cells/organs for pathophysiologic studies
- Neurologic phenotypes

Cre-dependent ZsGreen characterization of Snap25-IRES-Cre

- Currently breeding *Pmm2*^{R137H/+}, *Pmm2*^{fl/fl} and *Snap25*^{Cre/+} together
- *Pmm2*^{fl/fl}; *Snap25*^{Cre/+} mouse

Acknowledgements

- Dr. Zhaolan Zhou
- Zhou Laboratory
 - Yolanda Cui
 - Nicolas Sarmiento
 - Dasha Zaitseva
- Dr. Daniel Rader
- Dr. Miao He

Funding SourcesNIH T32 GM008638

